Directions:

- You will answer FOUR questions.
- You MUST choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Time: 2.5 hours

Math 620

- 1. Let G be a group. Prove that G is abelian if and only if the map $: G \to G$ defined via $(g) = g^{-1}$ is a group automorphism.
- 2. Let *R* be an integral domain. Prove that for *a* in *R*, $\langle a \rangle = R$ if and only if *a* is a unit.

Math 630

- 3. Consider the sequence of functions $f_n(x) = x^{2n}$.
 - (a)

Math 670

5. Consider the equation $e^x = 3 - (x - 1)^2$

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Analysis

- 1. Let *D* be an open connected subset of \mathbb{C} and let $f:D = \mathbb{C}$ be analytic in *D* Prove that if \overline{f} is analytic in *D* then *f* is constant in *D*.
- 2. Prove: If f is analytic within and on a simple closed contour , and z_0 is not on , then

$$\int_{z\in} \frac{f(z)}{(z-z_0)^2} dz = \int_{z\in} \frac{f'(z)}{z-z_0} dz$$

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 660: Topology

3. Let X be a Hausdor space and f: X X be a continuous function. Prove: $F = \{x \mid X : f(x) = x\}$ is closed in X.

4. Let *A* and *B* be disjoint compact subspaces mpacts 95.411 ausdor space Prove: There exist disjoint open subsets *U* and *V* of *X* such that *A U* and *B V*.

(Recall: For any compact subspace Y h883252s95.453(اللاح)fl (کلاs)-1(do)1(r)-353(space)TF1911.955Tf r Y, there exist disjoint open neighborhoods of x₀ and Y.)

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 675: Di erential Equations

5. Consider the following di erential equation

$$(x^2 - 1)y'' + xy' - y = 0$$

- (a) Find the recursion relation for the series solution centered at $x_0 = 0$.
- (b) Find the first six non-zero terms of the series solution centered at $x_0 = 0$. Write your final answer in terms of the coe cients a_0 and a_1 .
- 6. Consider the system of di erential equations given by

$$\mathbf{x}' = \left(\begin{array}{cc} 0 & 2\\ -1 & 3 \end{array}\right) \mathbf{x}$$

- (a) What is the general solution to the homogeneous di erential equation above?
- (b) What is the general solution to the inhomogeneous system:

$$\mathbf{x}' = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^t \\ -e^t \end{pmatrix}.$$

Simplify your answer.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

maximize	6 <i>X</i> 1	$+ 9X_2$	+ 10 <i>x</i> ₃	
subject to	3 <i>x</i> 1	$+ 2x_2$	- 6 <i>X</i> ₃	24
-	<i>X</i> ₁	+ 5 <i>X</i> ₂	$+ 2X_3$	18
	3 <i>x</i> 1	+ 3 <i>X</i> ₂	$+ 4X_3$	= 24
)	<i>K</i> ₁ , <i>X</i> ₂ , <i>X</i> ₃	0

8. Consider the problem

maximize	4 <i>x</i> ₁	+ 8 <i>X</i> ₂	+ 3 <i>X</i> ₃	
subject to	2 <i>x</i> ₁	$-3x_{2}$	$+ 2x_3$	26
-	$-3x_{1}$	+ X ₂	$+ 4x_3$	24
	3 <i>x</i> 1	$+ 2x_2$	$-2x_{3}$	30
		<i>X</i> 1	, X ₂ , X ₃	0

The first and last tableau are shown below.

	<i>X</i> 1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	b
<i>X</i> ₄	2	-3	2	1	0	0	26
<i>X</i> ₅	-3	1	4	0	1	0	24
<i>X</i> ₆	3	2	-2	0	0	1	30
	-4	-8	-3	0	0	0	0
<i>X</i> ₁	1	0	0	<u>5</u> 28	$\frac{1}{28}$	$\frac{1}{4}$	13
<i>X</i> ₃	0	0	1	<u>9</u> 56	<u>13</u> 56	$\frac{1}{8}$	<u>27</u> 2
<i>X</i> ₂	0	1	0	$-\frac{3}{28}$	<u>5</u> 28	$\frac{1}{4}$	9
	0	0	0	<u>19</u> 56	<u>127</u> 56	<u>27</u> 8	<u>329</u> 2

Use sensitivity analysis to answer the questions below. For each situation, return to the original problem as given.

- (a) How much can c_2 , the coe cient of x_2 , change in the objective function and not change the solution of $(x_1, x_2, x_3) = (13, 9, \frac{27}{2})$?
- (b) What would be the new solution if the following constraint is added to the system?

$$x_1 - 2x_2 + 3x_3 = 12$$